The realization space is [0 1 1 0 0 1 x1 -x1^3 + x1^2 + x1 -x1^3 + x1^2 + x1 x1 -x1^3 + x1^2 + x1] [1 1 0 1 0 0 1 x1 + 1 1 1 x1 + 1] [1 1 0 0 1 1 0 x1^2 x1^2 x1^2 -x1^4 + x1^3 + x1^2] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (-x1^15 + 4*x1^14 - 4*x1^13 - 3*x1^12 + 7*x1^11 + x1^10 - 7*x1^9 - x1^8 + 3*x1^7 + x1^6) avoiding the zero loci of the polynomials RingElem[x1, x1 - 1, x1^3 - x1^2 + 1, x1^3 - 2*x1^2 + x1 + 1, x1 + 1, 2*x1 + 1, x1^2 - 2*x1 - 1, x1^4 - 2*x1^3 + 2*x1 + 1, x1^4 - x1^3 - x1^2 + x1 + 1, x1^2 - x1 - 1, x1^3 - x1 - 1]